Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 269
1.
J Orthop Surg Res ; 19(1): 294, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745231

BACKGROUND: Osteonecrosis of the femoral head caused by glucocorticoids (GIONFH) is a significant issue resulting from prolonged or excessive clinical glucocorticoid use. Astaxanthin, an orange-red carotenoid present in marine organisms, has been the focus of this study to explore its impact and mechanism on osteoblast apoptosis induced by dexamethasone (Dex) and GIONFH. METHODS: In this experiment, bioinformatic prediction, molecular docking and dynamics simulation, cytotoxicity assay, osteogenic differentiation, qRT-PCR analysis, terminal uridine nickend labeling (TUNEL) assay, determination of intracellular ROS, mitochondrial function assay, immunofluorescence, GIONFH rat model construction, micro-computed tomography (micro-CT) scans were performed. RESULTS: Our research demonstrated that a low dose of astaxanthin was non-toxic to healthy osteoblasts and restored the osteogenic function of Dex-treated osteoblasts by reducing oxidative stress, mitochondrial dysfunction, and apoptosis. Furthermore, astaxanthin rescued the dysfunction in poor bone quality, bone metabolism and angiogenesis of GIONFH rats. The mechanism behind this involves astaxanthin counteracting Dex-induced osteogenic damage by activating the Nrf2 pathway. CONCLUSION: Astaxanthin shields osteoblasts from glucocorticoid-induced oxidative stress and mitochondrial dysfunction via Nrf2 pathway activation, making it a potential therapeutic agent for GIONFH treatment.


Femur Head Necrosis , Glucocorticoids , Mitochondria , NF-E2-Related Factor 2 , Osteoblasts , Osteogenesis , Oxidative Stress , Xanthophylls , Animals , Xanthophylls/pharmacology , Oxidative Stress/drug effects , NF-E2-Related Factor 2/metabolism , Glucocorticoids/adverse effects , Glucocorticoids/toxicity , Femur Head Necrosis/chemically induced , Femur Head Necrosis/metabolism , Osteogenesis/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Rats , Osteoblasts/drug effects , Osteoblasts/metabolism , Male , Dexamethasone/pharmacology , Dexamethasone/adverse effects , Rats, Sprague-Dawley , Apoptosis/drug effects , Disease Models, Animal
2.
BMC Musculoskelet Disord ; 25(1): 359, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711079

BACKGROUND: With the increasing incidence of steroid-induced necrosis of the femoral head (SNFH), numerous scholars have investigated its pathogenesis. Current evidence suggests that the imbalance between lipogenesis and osteoblast differentiation in bone marrow mesenchymal stem cells (BMSCs) is a key pathological feature of SNFH. MicroRNAs (miRNAs) have strong gene regulatory effects and can influence the direction of cell differentiation. N6-methyladenosine (m6A) is a prevalent epigenetic modification involved in diverse pathophysiological processes. However, knowledge of how miRNAs regulate m6A-related factors that affect BMSC differentiation is limited. OBJECTIVE: We aimed to investigate the role of miR27a in regulating the expression of YTHDF2 in BMSCs. METHODS: We compared miR27a, YTHDF2, and total m6A mRNA levels in SNFH-affected and control BMSCs. CCK-8 and TUNEL assays were used to assess BMSC proliferation and apoptosis. Western blotting and qRT‒PCR were used to measure the expression of osteogenic (ALP, RUNX2, and OCN) and lipogenic (PPARγ and C/EBPα) markers. Alizarin Red and Oil Red O staining were used to quantify osteogenic and lipogenic differentiation, respectively. miR27a was knocked down or overexpressed to evaluate its impact on BMSC differentiation and its relationship with YTHDF2. Bioinformatics analyses identified YTHDF2 as a differentially expressed gene in SNFH (ROC analysis) and revealed potential signaling pathways through GSEA. The effects of YTHDF2 silencing on the lipogenic and osteogenic functions of BMSCs were assessed. RESULTS: miR27a downregulation and YTHDF2 upregulation were observed in the SNFH BMSCs. miR27a knockdown/overexpression modulated YTHDF2 expression, impacting BMSC differentiation. miR27a silencing decreased m6A methylation and promoted osteogenic differentiation, while YTHDF2 silencing exerted similar effects. GSEA suggested potential signaling pathways associated with YTHDF2 in SNFH. CONCLUSION: miR27a regulates BMSC differentiation through YTHDF2, affecting m6A methylation and promoting osteogenesis. This finding suggests a potential therapeutic target for SNFH.


Adenosine/analogs & derivatives , Cell Differentiation , Mesenchymal Stem Cells , MicroRNAs , Osteogenesis , RNA-Binding Proteins , MicroRNAs/genetics , MicroRNAs/metabolism , Mesenchymal Stem Cells/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Osteogenesis/genetics , Humans , Femur Head Necrosis/genetics , Femur Head Necrosis/metabolism , Femur Head Necrosis/chemically induced , Cells, Cultured , Apoptosis , Adenosine/metabolism , Animals , Male , Methylation , Cell Proliferation , Lipogenesis/genetics
3.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 712-719, 2024 Apr 20.
Article Zh | MEDLINE | ID: mdl-38708505

OBJECTIVE: To explore the mechanism underlying the protective effect of α2-macroglobulin (A2M) against glucocorticoid-induced femoral head necrosis. METHODS: In a human umbilical vein endothelial cell (HUVEC) model with injuries induced by gradient concentrations of dexamethasone (DEX; 10-8-10-5 mol/L), the protective effects of A2M at 0.05 and 0.1 mg/mL were assessed by examining the changes in cell viability, migration, and capacity of angiogenesis using CCK-8 assay, Transwell and scratch healing assays and angiogenesis assay. The expressions of CD31 and VEGF-A proteins in the treated cells were detected using Western blotting. In BALB/c mouse models of avascular necrosis of the femoral head induced by intramuscular injections of methylprednisolone, the effects of intervention with A2M on femoral trabecular structure, histopathological characteristics, and CD31 expression were examined with Micro-CT, HE staining and immunohistochemical staining. RESULTS: In cultured HUVECs, DEX treatment significantly reduced cell viability, migration and angiogenic ability in a concentration- and time-dependent manner (P<0.05), and these changes were obviously reversed by treatment with A2M in positive correlation with A2M concentration (P<0.05). DEX significantly reduced the expression of CD31 and VEGF-A proteins in HUVECs, while treatment with A2M restored CD31 and VEGF-A expressions in the cells (P<0.05). The mouse models of femoral head necrosis showed obvious trabecular damages in the femoral head, where a large number of empty lacunae and hypertrophic fat cells could be seen and CD31 expression was significantly decreased (P<0.05). A2M treatment of the mouse models significantly improved trabecular damages, maintained normal bone tissue structures, and increased CD31 expression in the femoral head (P<0.05). CONCLUSION: A2M promotes proliferation, migration, and angiogenesis of DEX-treated HUVECs and alleviates methylprednisolone-induced femoral head necrosis by improving microcirculation damages and maintaining microcirculation stability in the femoral head.


Cell Movement , Cell Proliferation , Dexamethasone , Femur Head Necrosis , Glucocorticoids , Human Umbilical Vein Endothelial Cells , Mice, Inbred BALB C , Animals , Mice , Femur Head Necrosis/chemically induced , Femur Head Necrosis/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Glucocorticoids/adverse effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Dexamethasone/adverse effects , Dexamethasone/pharmacology , Vascular Endothelial Growth Factor A/metabolism , Cell Survival/drug effects , Femur Head/pathology , Femur Head/blood supply , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Angiogenesis
4.
J Orthop Surg Res ; 19(1): 243, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38622659

Inflammatory reactions are involved in the development of steroid-induced osteonecrosis of the femoral head(ONFH). Studies have explored the therapeutic efficacy of inhibiting inflammatory reactions in steroid-induced ONFH and revealed that inhibiting inflammation may be a new strategy for preventing the development of steroid-induced ONFH. Exosomes derived from M2 macrophages(M2-Exos) display anti-inflammatory properties. This study aimed to examine the preventive effect of M2-Exos on early-stage steroid-induced ONFH and explore the underlying mechanisms involved. In vitro, we explored the effect of M2-Exos on the proliferation and osteogenic differentiation of bone marrow-derived mesenchymal stem cells(BMMSCs). In vivo, we investigated the role of M2-Exos on inflammation, osteoclastogenesis, osteogenesis and angiogenesis in an early-stage rat model of steroid-induced ONFH. We found that M2-Exos promoted the proliferation and osteogenic differentiation of BMMSCs. Additionally, M2-Exos effectively attenuated the osteonecrotic changes, inhibited the expression of proinflammatory mediators, promoted osteogenesis and angiogenesis, reduced osteoclastogenesis, and regulated the polarization of M1/M2 macrophages in steroid-induced ONFH. Taken together, our data suggest that M2-Exos are effective at preventing steroid-induced ONFH. These findings may be helpful for providing a potential strategy to prevent the development of steroid-induced ONFH.


Bone Resorption , Exosomes , Femur Head Necrosis , Osteonecrosis , Rats , Animals , Osteogenesis , Exosomes/metabolism , Femur Head/metabolism , Osteonecrosis/prevention & control , Inflammation/metabolism , Macrophages/metabolism , Steroids/adverse effects , Femur Head Necrosis/chemically induced , Femur Head Necrosis/prevention & control , Femur Head Necrosis/metabolism
5.
J Cell Physiol ; 239(5): e31224, 2024 May.
Article En | MEDLINE | ID: mdl-38481029

With the prevalence of coronavirus disease 2019, the administration of glucocorticoids (GCs) has become more widespread. Treatment with high-dose GCs leads to a variety of problems, of which steroid-induced osteonecrosis of the femoral head (SONFH) is the most concerning. Since hypoxia-inducible factor 1α (HIF-1α) is a key factor in cartilage development and homeostasis, it may play an important role in the development of SONFH. In this study, SONFH models were established using methylprednisolone (MPS) in mouse and its proliferating chondrocytes to investigate the role of HIF-1α in cartilage differentiation, extracellular matrix (ECM) homeostasis, apoptosis and glycolysis in SONFH mice. The results showed that MPS successfully induced SONFH in vivo and vitro, and MPS-treated cartilage and chondrocytes demonstrated disturbed ECM homeostasis, significantly increased chondrocyte apoptosis rate and glycolysis level. However, compared with normal mice, not only the expression of genes related to collagens and glycolysis, but also chondrocyte apoptosis did not demonstrate significant differences in mice co-treated with MPS and HIF-1α inhibitor. And the effects observed in HIF-1α activator-treated chondrocytes were similar to those induced by MPS. And HIF-1α degraded collagens in cartilage by upregulating its downstream target genes matrix metalloproteinases. The results of activator/inhibitor of endoplasmic reticulum stress (ERS) pathway revealed that the high apoptosis rate induced by MPS was related to the ERS pathway, which was also affected by HIF-1α. Furthermore, HIF-1α affected glucose metabolism in cartilage by increasing the expression of glycolysis-related genes. In conclusion, HIF-1α plays a vital role in the pathogenesis of SONFH by regulating ECM homeostasis, chondrocyte apoptosis, and glycolysis.


Apoptosis , Chondrocytes , Glycolysis , Homeostasis , Hypoxia-Inducible Factor 1, alpha Subunit , Animals , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Glycolysis/drug effects , Apoptosis/drug effects , Chondrocytes/metabolism , Chondrocytes/drug effects , Chondrocytes/pathology , Mice , Femur Head Necrosis/chemically induced , Femur Head Necrosis/pathology , Femur Head Necrosis/metabolism , Femur Head Necrosis/genetics , Cartilage/metabolism , Cartilage/pathology , Cartilage/drug effects , Extracellular Matrix/metabolism , Male , Disease Models, Animal , Methylprednisolone/pharmacology , Glucocorticoids/pharmacology , Mice, Inbred C57BL , Femur Head/pathology , Femur Head/metabolism
6.
Bone ; 183: 117074, 2024 Jun.
Article En | MEDLINE | ID: mdl-38513307

BACKGROUND: Steroid-induced osteonecrosis of the femoral head (SONFH) is a prevalent and incapacitating condition that affects the hip joint. Unfortunately, early diagnostic and treatment measures are limited. METHODS: Our study employed Tandem Mass Tag (TMT) labeling mass spectrometry (MS)-based quantitative proteome to compare the proteins of femoral head tissues in patients with SONFH with those of patients who sustained femoral neck fracture (FNF). We investigated the level and effects of glucose transporter member 1 (GLUT1) in SONFH patients and MC3T3-E1 cells and examined the function and molecular mechanism of GLUT1 in the context of SONFH using in vivo and in vitro approaches. RESULTS: The SONFH group exhibited significant changes in protein expression levels compared to the fracture group. Specifically, we observed the up-regulation of 86 proteins and the down-regulation of 138 proteins in the SONFH group. Among the differentially expressed proteins, GLUT1 was down-regulated and associated with glucose metabolic processes in the SONFH group. Further analysis using Parallel Reaction Monitoring (PRM), WB, and PCR confirmed that the protein was significantly down-regulated in both femoral head tissue samples from SONFH patients and dexamethasone-treated MC3T3-E1 cells. Moreover, overexpression of GLUT1 effectively reduced glucocorticoid (GC)-induced apoptosis and the suppression of osteoblast proliferation and osteogenic differentiation in MC3T3-E1 cells, as well as GC-induced femoral head destruction in GC-induced ONFH rat models. Additionally, our research demonstrated that GC down-regulated GLUT1 transcription via glucocorticoid receptors in MC3T3-E1 cells. CONCLUSIONS: GLUT1 was down-regulated in patients with SONFH; furthermore, down-regulated GLUT1 promoted apoptosis and inhibited osteoblast ossification in dexamethasone-induced MC3T3-E1 cells and contributed to GC-induced femoral head destruction in a SONFH rat model. Glucocorticoids inhibited the transcriptional activity of GLUT1, leading to a reduction in the amount and activity of GLUT1 in the cells and ultimately promoting apoptosis and inhibiting osteoblast ossification via the GC/GR/GLUT1 axis in SONFH.


Femur Head Necrosis , Glucocorticoids , Osteonecrosis , Animals , Humans , Rats , Dexamethasone , Femur Head/metabolism , Femur Head/pathology , Femur Head Necrosis/chemically induced , Femur Head Necrosis/metabolism , Femur Head Necrosis/pathology , Glucocorticoids/adverse effects , Glucose Transporter Type 1/metabolism , Osteogenesis , Osteonecrosis/chemically induced , Proteomics , Steroids/adverse effects
7.
Sci Rep ; 14(1): 3329, 2024 02 09.
Article En | MEDLINE | ID: mdl-38337011

Osteonecrosis of the femoral head (ONFH) is a type of ischemic osteonecrosis that causes pain, loss of function, and femoral head collapse. Here, we analyzed samples of femoral heads excised from patients with ONFH to clarify the relationship between ischemic osteonecrosis and cellular senescence. X-gal staining was strong and p16INK4a-positive cells were abundant in the transitional region of ONFH. The ß-galactosidase-positive cells in the transitional region were also positive for nestin, periostin, or DMP-1. In contrast, no ß-galactosidase-positive cells were detected in the healthy region. The senescence-associated p16INK4a, p21, and p53 were upregulated in ONFH tissue. We also examined and analyzed a mouse ischemic femoral osteonecrosis model in vivo to verify the association between ONFH and cellular senescence. Human mesenchymal stem cell-conditioned medium (MSC-CM) was administered to determine its therapeutic efficacy against cellular senescence and bone collapse. MSC-CM reduced the number of senescent cells and downregulated the aforementioned senescence-related genes. It also decreased the number of empty lacunae 4 weeks after ischemia induction and promoted bone formation. At 6 weeks post-surgery, MSC-CM increased the trabecular bone volume, thereby suppressing bone collapse. We conclude that cellular senescence is associated with ONFH and that MSC-CM suppresses bone collapse in this disorder.


Femur Head Necrosis , Mesenchymal Stem Cells , Animals , Mice , Humans , Femur Head , Femur Head Necrosis/metabolism , Culture Media, Conditioned/pharmacology , Culture Media, Conditioned/metabolism , Mesenchymal Stem Cells/metabolism , Cellular Senescence
8.
Orthop Surg ; 16(3): 700-717, 2024 Mar.
Article En | MEDLINE | ID: mdl-38296807

OBJECTIVE: Osteonecrosis of the femoral head (ONFH) is a common orthopedic disease with a high disability rate. The clinical effect of BuShenHuoXue decoction (BSHX) for ONFH is satisfactory. We aimed to elucidate the potential angiogenic mechanisms of BSHX in a rat femoral osteonecrosis model and bone marrow mesenchymal stem cells (BMSCs). METHODS: With in vivo experiments, we established the steroid-induced osteonecrosis of the femoral head (SONFH) model using Sprague-Dawley (SD) rats (8-week-old). The rats were randomly divided into five group of 12 rats each and given the corresponding interventions: control, model (gavaged with 0.9% saline), BSHX low-, medium- and high-dose groups (0.132 3, 0.264 6, and 0.529 2 g/mL BSHX solution by gavage). After 12 weeks, haematoxylin and eosin (H&E) staining was preformed to evaluate rat osteonecrosis. the expression of angiogenic factors (CD31, VEGFA, KDR, VWF) in rat femoral head was detected by immunohistochemistry, qPCR and western blotting. In cell experiment, BMSCs were isolated and cultured in the femoral bone marrow cavity of 4-week-old SD rats. BMSCs were randomly divided into eight groups and intervened with different doses of BSHX-containing serum and glucocorticoids: control group (CG); BSHX low-, medium-, and high-dose groups (CG + 0.661 5, 1.323, and 2.646 g/kg BSHX gavage rat serum); dexamethasone (Dex) group; and Dex + BSHX low-, medium-, and high-dose groups (Dex + 0.661 5, 1.323, and 2.646 g/kg BSHX gavaged rat serum), the effects of BSHX-containing serum on the angiogenic capacity of BMSCs were examined by qPCR and Western blotting. A co-culture system of rat aortic endothelial cells (RAOECs) and BMSCs was then established. Migration and angiogenesis of RAOECs were observed using angiogenesis and transwell assay. Identification of potential targets of BSHX against ONFH was obtained using network pharmacology. RESULTS: BSHX upregulated the expression of CD31, VEGFA, KDR, and VWF in rat femoral head samples and BMSCs (p < 0.05, vs. control group or model group). Different concentrations of BSHX-containing serum significantly ameliorated the inhibition of CD31, VEGFA, KDR and VWF expression by high concentrations of Dex. BSHX-containing serum-induced BMSCs promoted the migration and angiogenesis of RAOECs, reversed to some extent the adverse effect of Dex on microangiogenesis in RAOECs, and increased the number of microangiogenic vessels. Furthermore, we identified VEGFA, COL1A1, COL3A1, and SPP1 as important targets of BSHX against ONFH. CONCLUSION: BSHX upregulated the expression of angiogenic factors in the femoral head tissue of ONFH model rats and promoted the angiogenic capacity of rat RAOECs and BMSCs. This study provides an important basis for the use of BSHX for ONFH prevention and treatment.


Femur Head Necrosis , Osteonecrosis , Rats , Animals , Femur Head , Femur Head Necrosis/chemically induced , Femur Head Necrosis/drug therapy , Femur Head Necrosis/metabolism , Endothelial Cells/metabolism , Network Pharmacology , von Willebrand Factor/adverse effects , Rats, Sprague-Dawley , Osteogenesis
9.
J Orthop Surg Res ; 19(1): 13, 2024 Jan 03.
Article En | MEDLINE | ID: mdl-38169408

PURPOSE: This study is aimed to delve into the crucial proteins associated with hormonal osteonecrosis of the femoral head (ONFH) and its intra-articular lesions through data-independent acquisition (DIA) proteomics and bioinformatics analysis. METHODS: We randomly selected samples from eligible ONFH patients and collected samples from the necrotic area of the femoral head and load-bearing cartilage. The control group comprised specimens from the same location in patients with femoral neck fractures. With DIA proteomics, we quantitatively and qualitatively tested both groups and analyzed the differentially expressed proteins (DEPs) between groups. Additionally, we enriched the analysis of DEP functions using gene ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways and verified the key proteins in ONFH through Western blot. RESULTS: Proteomics experiment uncovered 937 common DEPs (422 upregulated and 515 downregulated) between the two groups. These DEPs mainly participate in biological processes such as hidden attributes, catalytic activity, molecular function regulators, and structural molecule activity, and in pathways such as starch and sucrose metabolism, ECM-receptor interaction, PI3K-Akt signaling, complement and coagulation cascades, IL-17 signaling, phagosome, transcriptional misregulation in cancers, and focal adhesion. Through protein-protein interaction network target gene analysis and Western blot validation, we identified C3, MMP9, APOE, MPO, LCN2, ELANE, HPX, LTF, and THBS1 as key proteins in ONFH. CONCLUSIONS: With DIA proteomics and bioinformatics analysis, this study reveals the molecular mechanisms of intra-articular lesions in ONFH. A correlation in the necrotic area and load-bearing cartilage of ONFH at ARCO stages IIIB-IV as well as potential key regulatory proteins was identified. These findings will help more deeply understand the pathogenesis of ONFH and may provide important clues for seeking more effective treatment strategies.


Femur Head Necrosis , Osteonecrosis , Humans , Femur Head Necrosis/metabolism , Femur Head/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proteomics , Osteonecrosis/genetics , Cartilage/pathology
10.
Free Radic Biol Med ; 213: 208-221, 2024 03.
Article En | MEDLINE | ID: mdl-38142952

Our study investigated the possible molecular mechanism of glucocorticoid in steroid-induced osteonecrosis of the femoral head (SINFH) through regulating serum alpha-2-macroglobulin and SIRT2-mediated BMP2 deacetylation. Essential genes involved in glucocorticoid-induced SINFH were screened by transcriptome sequencing and analyzed by bioinformatics, followed by identifying downstream regulatory targets. Rat bone marrow mesenchymal stem cells were isolated and treated with methylprednisolone (MP) for in vitro cell experiments. Besides, a glucocorticoid-induced rat ONFH was established using the treatment of MP and LPS. ChIP-PCR detected the enrichment of SIRT2 in the promoter region of BMP2, and the deacetylation modification of SIRT2 on BMP2 was determined. Bioinformatics analysis revealed that glucocorticoids may induce ONFH through the SIRT2/BMP2 axis. In vitro cell experiments showed that glucocorticoids up-regulated SIRT2 expression in BMSCs by inducing oxidative stress, thereby promoting cell apoptosis. The up-regulation of SIRT2 expression may be due to the decreased ability of α2 macroglobulin to inhibit oxidative stress, and the addition of NOX protein inhibitor DPI could significantly inhibit SIRT2 expression. SIRT2 could promote histone deacetylation of the BMP2 promoter and inhibit its expression. In vitro cell experiments further indicated that knocking down SIRT2 could protect BMSC from oxidative stress and cell apoptosis induced by glucocorticoids by promoting BMP2 expression. In addition, animal experiments conducted also demonstrated that the knockdown of SIRT2 could improve glucocorticoid-induced ONFH through up-regulating BMP2 expression. Glucocorticoids could induce oxidative stress by down-regulating serum α2M to promote SIRT2-mediated BMP2 deacetylation, leading to ONFH.


Femur Head Necrosis , Pregnancy-Associated alpha 2-Macroglobulins , Female , Pregnancy , Rats , Animals , Glucocorticoids/pharmacology , Femur Head/metabolism , Sirtuin 2/genetics , Femur Head Necrosis/chemically induced , Femur Head Necrosis/genetics , Femur Head Necrosis/metabolism , Steroids , Transcription Factors , Osteogenesis
11.
BMC Musculoskelet Disord ; 24(1): 894, 2023 Nov 17.
Article En | MEDLINE | ID: mdl-37978375

BACKGROUND: Steroid-induced avascular necrosis of the femoral head (SANFH) is characterized by osteoblast apoptosis, leading to a loss of bone structure and impaired hip joint function. It has been demonstrated that erythropoietin (EPO) performs a number of biological roles. OBJECTIVE: We examined the effects of EPO on SANFH and its regulation of the STAT1-caspase 3 signaling pathway. METHOD: In vitro, osteoblasts were treated with dexamethasone (Dex) or EPO. We identified the cytotoxicity of EPO by CCK-8, the protein expression of P-STAT1, cleaved-caspase9, cleaved-caspase3, Bcl-2, BAX, and cytochrome c by Western blotting, and evaluated the apoptosis of osteoblasts by flow cytometry. In vivo, we analyzed the protective effect of EPO against SANFH by hematoxylin and eosin (H&E), Immunohistochemical staining, and Micro-computed tomography (CT). RESULTS: In vitro, EPO had no apparent toxic effect on osteoblasts. In Dex-stimulated cells, EPO therapy lowered the protein expression of BAX, cytochrome c, p-STAT1, cleaved-caspase9, and cleaved-caspase3 while increasing the expression of Bcl-2. EPO can alleviate the apoptosis induced by Dex. In vivo, EPO can lower the percentage of empty bone lacunae in SANFH rats. CONCLUSION: The present study shows that EPO conferred beneficial effects in rats with SANFH by inhibiting STAT1-caspase 3 signaling, suggesting that EPO may be developed as a treatment for SANFH.


Erythropoietin , Femur Head Necrosis , Rats , Animals , Caspase 3/metabolism , bcl-2-Associated X Protein/metabolism , Femur Head Necrosis/chemically induced , Femur Head Necrosis/drug therapy , Femur Head Necrosis/metabolism , Cytochromes c/metabolism , Cytochromes c/pharmacology , X-Ray Microtomography , Apoptosis , Signal Transduction , Osteoblasts/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Erythropoietin/pharmacology , Steroids/adverse effects
12.
Int Immunopharmacol ; 122: 110639, 2023 Sep.
Article En | MEDLINE | ID: mdl-37481850

Inflammation stands as a pivotal factor in the pathogenesis of glucocorticoid-associated osteonecrosis of the femoral head (GA-ONFH). However, the vital role played by M1 macrophages, the principal constituents of the inflammatory process, remains largely underexplored. In this study, we employed reverse transcription-quantitative polymerase chain Reaction (RT-PCR), western blot, and flow cytometry to assess the impact of M1-conditioned medium on cultures of mouse bone marrow-derived mesenchymal stem cells (BMSCs) and Murine Long bone Osteocyte-Y4 (MLO-Y4) in vitro. Moreover, we quantified the levels of inflammatory cytokines in the M1-conditioned medium through the employment of an enzyme-linked immunosorbent assay (ELISA). For in vivo analysis, we examined M1 macrophages and investigated the NF-kB signaling pathway in specimens obtained from the femoral heads of animals and humans. We found that the number of M1 macrophages in the femoral head of GA-ONFH patients grew significantly, and in the mice remarkably increase, maintaining high levels in the intramedullary. In vitro, the M1 macrophage-conditioned medium elicited apoptosis in BMSCs and MLO-Y4 cells, shedding light on the intricate interplay between macrophages and these cell types. The presence of TNF-α within the M1-conditioned medium activated the NF-κB pathway, providing mechanistic insight into the apoptotic induction. Moreover, employing a robust rat macrophage clearance model and GA-ONFH model, we demonstrated a remarkable attenuation in TNF-α expression and NF-kB signaling subsequent to macrophage clearance. This pronounced reduction engenders diminished cellular apoptosis and engenders a decelerated trajectory of GA-ONFH progression. In conclusion, our study reveals the crucial involvement of M1 macrophages in the pathogenesis of GA-ONFH, highlighting their indispensable role in disease progression. Furthermore, early clearance emerges as a promising strategy for impeding the development of GA-ONFH.


Femur Head Necrosis , Glucocorticoids , Humans , Rats , Mice , Animals , Femur Head , Femur Head Necrosis/chemically induced , Femur Head Necrosis/metabolism , Tumor Necrosis Factor-alpha , NF-kappa B , Culture Media, Conditioned , Macrophages/metabolism
13.
J Bone Miner Res ; 38(7): 976-993, 2023 07.
Article En | MEDLINE | ID: mdl-37155311

Steroid-induced osteonecrosis of the femoral head (SONFH) is a refractory, progressive disease. However, the underlying mechanisms that aggravate femoral head necrosis remain unclear. Extracellular vesicles (EVs) act as molecular carriers in intercellular communication. We hypothesize that EVs derived from human (h) bone marrow stromal cells (BMSC) resident in SONFH lesion areas promote the pathogenesis of SONFH. In the present study, we determined the modulatory effects of SONFH-hBMSCs-derived EVs on the pathogenesis of SONFH in vitro and in vivo. We found that the expression of hsa-miR-182-5p was downregulated in SONFH-hBMSCs and EVs isolated from those hBMSCs. After tail vein injection, EVs isolated from hBMSCs transfected with hsa-miR-182-5p inhibitor aggravated femoral head necrosis in the SONFH mouse model. We conclude that miR-182-5p regulates bone turnover in the SONFH mouse model via targeting MYD88 and subsequent upregulation of RUNX2 expression. We further assume that EVs derived from hBMSCs resident in SONFH lesion areas aggravate femoral head necrosis by downregulating miR-182-5p secreted from hBMSC located outside these lesions. We suggest that miR-182-5p could provide a novel target for future therapeutic approaches to treat or prevent SONFH. © 2023 American Society for Bone and Mineral Research (ASBMR).


Extracellular Vesicles , Femur Head Necrosis , Mesenchymal Stem Cells , MicroRNAs , Animals , Mice , Humans , Femur Head Necrosis/chemically induced , Femur Head Necrosis/genetics , Femur Head Necrosis/metabolism , Femur Head/metabolism , Steroids/adverse effects , Extracellular Vesicles/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Mesenchymal Stem Cells/metabolism , Disease Progression
14.
J Mol Histol ; 54(3): 207-216, 2023 Jun.
Article En | MEDLINE | ID: mdl-37156987

Glucocorticoid (GC)-induced osteonecrosis of the femoral head (ONFH) is a serious complication of glucocorticoid treatment and is characterized by dysfunctional bone reconstruction at necrotic sites. Our previous study confirmed the protective potential of necrostatin-1, a selective blocker of necroptosis, in glucocorticoid-induced osteoporosis. In this study, rat models of GC-induced ONFH were established to evaluate the effects of necrostatin-1 on osteonecrotic changes and repair processes. Osteonecrosis was verified by histopathological staining. An analysis of trabecular bone architecture was performed to evaluate osteogenesis in the osteonecrotic zone. Then, necroptotic signaling molecules such as RIP1 and RIP3 were examined by immunohistochemistry. Histopathological observations indicated that necrostatin-1 administration reduced the incidence of osteonecrosis and the osteogenic response in subchondral areas. Additionally, bone histomorphometry demonstrated that necrostatin-1 intervention could restore bone reconstruction in the necrotic zone. The protective mechanism of necrostatin-1 was related to the inhibition of RIP1 and RIP3. Necrostatin-1 administration alleviated GC-induced ONFH in rats by attenuating the formation of necrotic lesions, recovering the function of osteogenesis, and suppressing glucocorticoid-induced osteocytic necroptosis by inhibiting the expression of RIP1 and RIP3.


Femur Head Necrosis , Osteonecrosis , Rats , Animals , Glucocorticoids/adverse effects , Femur Head/metabolism , Femur Head/pathology , Osteonecrosis/chemically induced , Osteonecrosis/metabolism , Osteonecrosis/pathology , Imidazoles/adverse effects , Imidazoles/metabolism , Femur Head Necrosis/chemically induced , Femur Head Necrosis/drug therapy , Femur Head Necrosis/metabolism
15.
Toxicon ; 230: 107174, 2023 Jul.
Article En | MEDLINE | ID: mdl-37236550

Steroid-induced avascular necrosis of femoral head (SANFH) is one of the most common complications caused by long-term or excessive clinical use of glucocorticoids. This study aimed to investigate the effects of dried root of Rehmannia glutinosa extracts (DRGE) in SANFH. First, SANFH rat model was established by dexamethasone (Dex). Tissue change and proportion of empty lacunae were detected by hematoxylin and eosin staining. Protein levels were detected by western bloting analysis. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was performed to assess apoptosis of femoral head tissue. Cell viability and apoptosis of MC3T3-E1 cells were assessed by Cell Counting Kit-8 assay and flow cytometry. ALP activity and cell mineralization were detected by ALP staining assay and Alizarin red staining. The findings showed that DRGE improved tissue damage, inhibited apoptosis, and promoted osteogenesis in SANFH rats. In vitro, DRGE increased cell viability, inhibited cell apoptosis, promoted osteoblast differentiation, reduced the levels of p-GSK-3ß/GSK-3ß, but increased the levels of ß-catenin in cells treated with Dex. Furthermore, DKK-1, an inhibitor of the wingless-type (Wnt)/ß-catenin signaling pathway, reversed the effect of DRGE on cell apoptosis and ALP activity in cells treated with Dex. In conclusion, DRGE prevents SANFH by activating the Wnt/ß-catenin signaling pathway, indicating that DRGE may be a hopeful choice drug to prevent and treat patients with SANFH.


Femur Head Necrosis , Plant Extracts , Rehmannia , Animals , Rats , beta Catenin/metabolism , Femur Head/metabolism , Femur Head Necrosis/chemically induced , Femur Head Necrosis/drug therapy , Femur Head Necrosis/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Osteogenesis , Rehmannia/chemistry , Signal Transduction , Steroids/adverse effects , Plant Extracts/pharmacology
16.
Biomed Pharmacother ; 162: 114403, 2023 Jun.
Article En | MEDLINE | ID: mdl-37003034

OBJECTIVES: In the field of orthopedics, osteonecrosis of the femoral head (ONFH) is a common and refractory condition sometimes known as "immortal cancer" due to its complicated etiology, difficult treatment, and high disability rate. This paper's main goal is to examine the most recent literature on the pro-apoptotic effects of traditional Chinese medicine TCM monomers or compounds on osteocytes and to provide a summary of the potential signal routes. METHODS: The last ten years' worth of literature on ONFH as well as the anti-ONFH effects of aqueous extracts and monomers from traditional Chinese medicine were compiled. CONCLUSIONS: When all the relevant signal pathways are considered, the key apoptotic routes include those mediated by the mitochondrial pathway, the MAPK signaling pathway, the PI3K/Akt signaling pathway, the Wnt/-catenin signaling pathway, the HIF-1 signaling network, etc. As a result, we anticipate that this study will shed light on the value of TCM and its constituent parts for treating ONFH by inducing apoptosis in osteocytes and offer some guidance for the future development of innovative medications as anti-ONFH medications in clinical settings.


Femur Head Necrosis , Osteonecrosis , Humans , Osteocytes/metabolism , Femur Head , Phosphatidylinositol 3-Kinases/metabolism , Osteonecrosis/metabolism , Femur Head Necrosis/metabolism , Wnt Signaling Pathway , Apoptosis
17.
Int J Mol Sci ; 24(7)2023 Mar 27.
Article En | MEDLINE | ID: mdl-37047268

Femoral head necrosis (FHN) is a common leg disease in broilers, resulting in economic losses in the poultry industry. The occurrence of FHN is closely related to the decrease in the number of bone marrow mesenchymal stem cells (BMSCs) and the change in differentiation direction. This study aimed to investigate the function of differentiation of BMSCs in the development of FHN. We isolated and cultured BMSCs from spontaneous FHN-affected broilers and normal broilers, assessed the ability of BMSCs into three lineages by multiple staining methods, and found that BMSCs isolated from FHN-affected broilers demonstrated enhanced lipogenic differentiation, activated Notch-RBPJ signaling pathway, and diminished osteogenic and chondrogenic differentiation. The treatment of BMSCs with methylprednisolone (MP) revealed a significant decrease in the expressions of Runx2, BMP2, Col2a1 and Aggrecan, while the expressions of p-Notch1/Notch1, Notch2 and RBPJ were increased significantly. Jagged-1 (JAG-1, Notch activator)/DAPT (γ-secretase inhibitor) could promote/inhibit the osteogenic or chondrogenic ability of MP-treated BMSCs, respectively, whereas the differentiation ability of BMSCs was restored after transfection with si-RBPJ. The above results suggest that the Notch-RBPJ pathway plays important role in FHN progression by modulating the osteogenic and chondrogenic differentiation of BMSCs.


Femur Head Necrosis , Mesenchymal Stem Cells , Animals , Bone Marrow Cells , Cell Differentiation , Cells, Cultured , Chickens , Femur Head Necrosis/therapy , Femur Head Necrosis/metabolism , Mesenchymal Stem Cells/metabolism , Osteogenesis , Receptors, Notch/metabolism
18.
Mol Biol Rep ; 50(6): 4769-4779, 2023 Jun.
Article En | MEDLINE | ID: mdl-37029290

BACKGROUND: Runt-related transcription factor-2 (Runx2) has been considered an inducer to improve bone repair ability of mesenchymal stem cells (MSCs). METHODS AND RESULTS: Twenty-four rabbits were used to establish Osteonecrosis of the femoral head (ONFH) and randomly devided into four groups: Adenovirus Runx2 (Ad-Runx2) group, Runx2-siRNA group, MSCs group and Model group. At 1 week after model establishment, the Ad-Runx2 group was treated with 5 × 107 MSCs transfected through Ad-Runx2, the Runx2-siRNA group was treated with 5 × 107 MSCs transfected through Runx2-siRNA, the MSCs group was injected with 5 × 107 untreated MSCs, and the Model group was treated with saline. The injection was administered at 1 week and 3 weeks after model establishment. The expression of bone morphogenetic protein 2 (BMP-2), Runx2 and Osterix from the femoral head was detected at 3 and 6 weeks after MSCs being injected, and Masson Trichrome Staining, Gross Morphology, X-ray and CT images observation were used to evaluate the repair effect of ONFH. The data revealed that the expression of BMP-2, Runx2 and Osterix in the Runx2-siRNA group was reduced at 3 weeks compared with the MSCs group, and then the expression further reduced at 6 weeks, but was still higher than the Model group besides Osterix; The expression of these three genes in the Ad-Runx2 group was higher than in the MSCs group. Masson Trichrome Staining, Gross Morphology and X-ray and CT images observation revealed that necrotic femoral head of the MSCs group was more regular and smooth than the Runx2-siRNA group, which has a collapsed and irregular femoral head. In the Ad-Runx2 group, necrotic femoral head was basically completely repaired and covered by rich cartilage and bone tissue. CONCLUSIONS: Overexpression of Runx2 can improve osteoblastic phenotype maintenance of MSCs and promote necrotic bone repair of ONFH.


Femur Head Necrosis , Mesenchymal Stem Cells , Animals , Rabbits , Femur Head Necrosis/genetics , Femur Head Necrosis/therapy , Femur Head Necrosis/metabolism , Femur Head , Mesenchymal Stem Cells/metabolism , RNA, Small Interfering/pharmacology
19.
Metabolomics ; 19(4): 34, 2023 04 01.
Article En | MEDLINE | ID: mdl-37002424

INTRODUCTION: Osteonecrosis of the femoral head (ONFH) is a disorder that causes a collapse of the femoral head, requiring subsequent total hip replacement. However, the pathogenesis of ONFH remains largely unclear. Herein, exosome metabolomics analyses were conducted to explore the pathophysiology of ONFH. OBJECTIVES: This study aimed to conduct metabolic profiling of bone-derived exosomes of ONFH. METHODS: 30 ONFH patients and 30 femoral neck fracture (FNF) patients were included in this study. Exosomes were harvested from the femoral head by using ultracentrifugation. Ultraperformance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) was performed in combination with multivariate statistical analysis to reveal and provided new insight into identify the global metabolic profile of ONFH. RESULTS: The results of transmission electron microscope (TEM), nanoparticle tracking analysis (NTA), and Western blots indicated that the microvesicles isolated from the femoral head were exosomes. Several compounds were identified, including lipids and lipid-like molecules, amino acids, peptides, organooxygen compounds. 44 differential metabolites were screened between ONFH and FNF patients. The up-and down-regulation of Riboflavin metabolism, Pantothenate and CoA biosynthesis, Glycerophospholipid metabolism, and Sphingolipid metabolism were associated with ONFH pathophysiology. CONCLUSION: Our results suggest that metabolomics has huge prospects for elucidating pathophysiology of ONFH.


Exosomes , Femur Head Necrosis , Humans , Chromatography, Liquid , Femur Head Necrosis/metabolism , Exosomes/metabolism , Femur Head/metabolism , Tandem Mass Spectrometry , Metabolomics
20.
Biomolecules ; 13(1)2023 01 13.
Article En | MEDLINE | ID: mdl-36671556

The etiology of osteonecrosis of the femoral head (ONFH) is not yet fully understood. However, ONFH is a common disease with high morbidity, and approximately one-third of cases are caused by glucocorticoids. We performed single-cell RNA sequencing of bone marrow to explore the effect of glucocorticoid on ONFH. Bone marrow samples of the proximal femur were extracted from four participants during total hip arthroplasty, including two participants diagnosed with ONFH for systemic lupus erythematosus (SLE) treated with glucocorticoids (the case group) and two participants with femoral neck fracture (the control group). Unbiased transcriptome-wide single-cell RNA sequencing analysis and computational analyses were performed. Seventeen molecularly defined cell types were identified in the studied samples, including significantly dysregulated neutrophils and B cells in the case group. Additionally, fatty acid synthesis and aerobic oxidation were repressed, while fatty acid beta-oxidation was enhanced. Our results also preliminarily clarified the roles of the inflammatory response, substance metabolism, vascular injury, angiogenesis, cell proliferation, apoptosis, and dysregulated coagulation and fibrinolysis in glucocorticoid-induced ONFH. Notably, we list the pathways that were markedly altered in glucocorticoid-induced ONFH with SLE compared with femoral head fracture, as well as their common genes, which are potential early therapeutic targets. Our results provide new insights into the mechanism of glucocorticoid-induced ONFH and present potential clues for effective and functional manipulation of human glucocorticoid-induced ONFH, which could improve patient outcomes.


Femur Head Necrosis , Lupus Erythematosus, Systemic , Humans , Glucocorticoids/metabolism , Femur Head Necrosis/chemically induced , Femur Head Necrosis/genetics , Femur Head Necrosis/metabolism , Femur Head/metabolism , Lupus Erythematosus, Systemic/metabolism , Sequence Analysis, RNA , Fatty Acids/metabolism
...